Строение простого вещества серы. Сера полезные свойства для человека. Получение и применение серы

Сера – важнейший элемент в современной промышленности.

Что такое сера и как она выглядит

Сера – химический элемент, находящийся по 16 номером в таблице Д. И. Менделеева и обозначающийся буквой S (по первой букве латинского названия Sulphur).

Молярная масса серы равна 32, 065 г/моль, атомная масса - 32,066 а. е. м. Это вещество может быть как ярко-желтого, так и коричневого цвета.

Различают порошкообразную (молотую) и жидкую серу.

Характеристика серы

Сера – вещество с переменной степенью окисления. На внешней электронной орбитали серы находятся шесть валентных электронов, для заполнения не хватает ещё двух, поэтому в соединениях с металлами и водородом она проявляет валентность -2.

При взаимодействии с кислородом и галогенами, т. е. с элементами с большей электроотрицательностью, сера может проявлять положительную валентность, например, +4 и +6.

Физические свойства

Как простое вещество, сера образует несколько аллотропных модификаций:

  1. Ромбическая – то, что мы привыкли называть обычной серой. Она устойчива при обычных условиях, встречается чаще всего недалеко от действующих или потухших вулканов.
  2. Пластическая – представляет собой замкнутые или открытые цепочки соединяющейся между собой серы, получаемые обычно при её сжигании. Имеет самую большую молекулярную массу среди всех разновидностей серы.
  3. Моноклинная (S8) – соединение серы, которое в молекулярном виде представляет собой восьмиугольник с атомами серы в вершинах. Выглядит как множество цилиндров, похожих на иглы. При комнатной температуре быстро превращается в ромбическую.

Приблизительная молярная масса одной молекулы моноклинной серы – 256 г/моль. В России сера, в основном, бывает только двух товарных видов: гранулированная и комовая.

Сера – легкоплавкое вещество, температура плавления около 120 градусов. Нерастворима в воде и не намокает про соприкосновении с ней.

Не обладает электролитическими свойствами и теплопроводностью. Плотность серы — 2,070 г/см³.

Химические свойства

В соединениях с водородом образует серную (химическая формула H2SO4) со степенью окисления серы +6 и сернистую (H2SO3) со степенью окисления +4 кислоты, которые дают соответственно сульфаты и сульфиты.

В нормальных условиях реагируют с активными металлами и ртутью, образуя сульфиды:

Также образует сульфиды при нагревании с большинством неактивных металлов, кроме платины и золота:

Fe + S (t) = Fe2S3

Проявляет восстановительные свойства в реакции с кислородом при нагревании, образуя кислотный оксид:

В реакциях с водородом образует сернистый газ, летучее бесцветное вещество с неприятным запахом тухлых яиц:

Области применения

В низких концентрациях способствует формированию новых клеток эпидермиса, из-за чего её часто используют для лечения воспалений. Помимо этого сера имеет слабительное действие, а при приеме внутрь оказывает отхаркивающий эффект.

Благодаря легковоспламеняемости и горючим свойствам, сера хорошо горит. Например, самое простое, где можно взять серу, это открыть полный спичечный коробок — сера входит в состав спичечной головки.

При трении головка касается шероховатой поверхности (например, наждачной бумаги), и спичка легко загорается.

Серная кислота (H2SO4) – важнейший продукт химической промышленности, используется в качестве электролита в свинцовых аккумуляторах, применяется для получения соляной, азотной, борной и других кислот.

Серная кислота является необходимым сульфирующим средством при получении многих лекарственных веществ и красок.

Сероводород (H2S) используется для выделения чистой серы, сульфитов и серной кислоты из растворов.

Оксиды серы (SO2 и SO3) находят применения в производстве серной и азотной кислот, а также используются в бытовой химии: входят в состав отбеливателей, дезинфицирующих средств.

Нахождение серы в природе

Чаще всего в природе находится самородная сера (S), однако встречаются и её соединения с другими элементами: FeS2 (сульфат железа (II), пирит), ZnS (сульфат цинка, цинковая обманка), CaSO4*2H2O (гипс), PbS (сульфат свинца, свинцовый блеск) и другие.

Биологическая роль серы

Сера содержится в живых организмах, особенно много её в белках ногтей, волос, копыт. Общая масса серы в человеческом организме составляет около 130 грамм. Также это вещество встречается в составе некоторых витаминов и гормонов.

Сера обладает уникальными химическими и физическими свойствами, благодаря чему является важнейшим компонентом промышленности и незаменима при создании лекарственных препаратов.

Гроссе Э., Вайсмантель X.

Химия для любознательных. Основы химии и занимательные опыты.

Пары серы взаимодействуют с раскаленным углем с образованием дисульфида углерода CS 2 (сероуглерода), огнеопасной жидкости с неприятным запахом. Он незаменим при производстве искусственного шелка и штапеля. Сера, которая, как известно, не растворяется в воде и в незначительных количествах растворяется в бензоле, спирте или эфире, прекрасно растворяется в сероуглероде.
Если медленно испарять на часовом стекле раствор небольшого количества серы в сероуглероде, то получим крупные кристаллы так называемой ромбической или α-серы. Но не будем забывать об огнеопасности и ядовитости сероуглерода , поэтому потушим все горелки и поставим часовое стекло под тягу или перед окном.
Другая форма - моноклинная, или β- сера получится, если терпеливо выкристаллизовывать из толуола иглы длиной около 1 см (толуол также огнеопасен! ). Как известно, в природе сера часто встречается в соединениях с металлами в форме сульфидов металлов. Широко используемый в лабораториях сульфид железа FeS представляет собой голубовато-черную массу. Мы получим его, если смешаем 20 г чистого порошка железа с 11 г порошка серы (серного цвета) и нагреем на огнеупорной подложке. Будем перемешивать смесь, чтобы она равномерно прокалилась. После охлаждения получим твердый остаток.
Сульфид железа используют для получения сероводорода, который применяют в химическом анализе для осаждения металлов. Поместим в пробирку немного (с горошину) полученного сульфида железа и добавим разбавленной соляной кислоты. Вещества взаимодействуют с бурным выделением газа:

FeS + 2НСl = H 2 S + FeCl 2

Из пробирки доносится неприятный запах тухлых яиц - это улетучивается сероводород . Если его пропустить через воду, то он частично растворится. Образуется слабая кислота, раствор которой часто называют сероводородной водой.
При работе с сероводородом надо соблюдать чрезвычайную осторожность, так как газ почти так же ядовит, как синильная кислота HCN. Он вызывает паралич дыхательных путей и смерть, если концентрация сероводорода в воздухе составляет 1,2-2,8 мг/л. Поэтому опыты с сероводородом следует проводить только на открытом воздухе или под тягой. К счастью, человеческие органы обоняния чувствуют сероводород уже при концентрации его в воздухе 0,0000001 мг/л. Но при длительном вдыхании сероводорода наступает паралич обонятельного нерва, и тут уже нельзя надеяться на наше обоняние.
Химически сероводород обнаруживают с помощью влажной свинцовой реактивной бумаги. Чтобы получить ее, смочим фильтровальную бумагу разбавленным раствором ацетата или нитрата свинца, высушим ее и разрежем на полоски шириной 1 см. (Осторожно! Соли свинца ядовиты! )
Сероводород взаимодействует с ионами свинца, в результате образуется черный сульфид свинца:

Pb 2+ + S 2-- = PbS↓

Другие полоски приготовленной свинцовой реактивной бумаги используем для опытов с природным сероводородом - проверим наличие сероводорода в испорченных продуктах питания (мясе, яйцах) или исследуем воздух над выгребной ямой и в хлеву.
Мы рекомендуем получать сероводород для опытов сухим методом, так как в этом случае поток газа можно легко регулировать и перекрыть в нужное время. Для этой цели расплавим в фарфоровой чашке около 25 г парафина (остатки свечки) и смешаем с расплавом 15 г серного цвета. Затем уберем горелку и будем перемешивать массу до застывания. Если мы рано прекратим перемешивание, то частички серы неравномерно распределятся в застывающем парафине. Твердую массу размельчим и сохраним для дальнейших опытов.
Когда надо получить сероводород, несколько кусочков смеси парафина и серы нагреем в пробирке с газоотводной трубкой до температуры выше 170 °С. При повышении температуры выход газа усиливается, а если убрать горелку - прекращается. В процессе реакции водород парафина взаимодействует с серой, в результате чего образуется сероводород, а в пробирке остается углерод, например: Чтобы рассмотреть окраску выпадающих в осадок сульфидов металлов, пропустим сероводород через растворы различных солей металлов. Сульфиды марганца, цинка, кобальта, никеля и железа выпадут, если в растворе создать щелочную среду (например, добавив гидроксид аммония). В солянокислом растворе выпадают сульфиды свинца, меди, висмута, кадмия, сурьмы и олова. Внесем наши наблюдения в таблицу, которая нам пригодится для дальнейших опытов. Сделав предварительно пробу на гремучий газ, подожжем сероводород, выходящий из оттянутой на конце стеклянной трубки. Сероводород горит с появлением бледного пламени с голубым ореолом:

2H 2 S + 3O 2 = 2Н 2 О + 2SO 2

В результате сгорания возникает оксид серы(IV) - "сернистый газ". Его легко определить по резкому запаху и по покраснению влажной голубой лакмусовой бумажки.
При недостаточном доступе кислорода сероводород окисляется только до серы. Активный уголь каталитически ускоряет этот процесс. Этим способом часто пользуются при тонкой очистке промышленных газов, содержание серы в которых не должно превышать 25 г/м 3:

2H 2 S + O 2 = 2H 2 O + 2S

Нетрудно воспроизвести этот процесс. Схема установки изображена на рисунке. Главное заключается в том, чтобы пропустить через активный уголь воздух и сероводород в соотношении 1:3. На угле выделится желтая сера.
Активный уголь можно очистить от серы, промыв его в сероуглероде. В технике для этой щели применяют чаще всего раствор сульфида аммония (NH 4) 2 S.

ДВА МЕТОДА ДЛЯ ОДНОГО ПРОДУКТА

Сера сгорает с появлением бледно-голубого пламени. При этом образуется бесцветный газ с резким запахом - оксид серы(IV) SO 2 . Он ядовит и раздражает дыхательные пути, поэтому мы должны стараться не вдыхать его. Оксид серы(IV) - сернистый газ - чрезвычайно хорошо растворяется в воде, в результате этого образуется сернистая кислота (гидрат диоксида серы):

Н 2 O + SO 2 = SО 2 *H 2 O

Она убивает микробы и обладает отбеливающим действием. На пивоваренных и винодельческих заводах серой окуривают бочки. Сернистым газом отбеливают также корзины из ивовых прутьев, влажную шерсть, солому, хлопок и шелк. Пятна от черники, например, выводятся, если долгое время держать увлажненное загрязненное место в "парах" горящей серы.
Проверим отбеливающее действие сернистой кислоты. Для этого в цилиндр, где некоторое время горели кусочки серы, опустим различные окрашенные предметы (цветы, влажные кусочки ткани, влажную лакмусовую бумагу и т. д.), хорошо закроем цилиндр стеклянной пластинкой и некоторое время подождем.
Тот, кто когда-нибудь изучал атомное строение элементов, знает, что в атоме серы на внешней орбите имеется шесть так называемых валентных электронов. Поэтому сера максимально может быть в соединениях шестивалентной. Этой степени окисления соответствует оксид серы(VI) с формулой SO 3 . Он является ангидридом серной кислоты:

Н 2 О + SO 3 = H 2 SO 4

При сгорании серы в обычных условиях всегда получается оксид серы(IV). А если и образуется некоторое количество оксида серы(VI), то чаще всего он тотчас же разлагается под действием тепла на оксид серы(IV) и кислород:

2SO3 = SO2 + О2

При производстве серной кислоты главной проблемой является превращение SO 2 в SO 3 . Для этой цели сейчас используются два способа: камерный (или улучшенный - башенный) и контактный . Заполним оксидом серы (IV) SO 2 большой сосуд (круглодонную колбу на 500 мл), поместив в него на некоторое время горящие кусочки серы или подведя газ из аппарата, где он образуется. Оксид серы (IV) можно также относительно легко получить, капая концентрированную серную кислоту в концентрированный раствор сульфита натрия Na 2 SO 3 . При этом серная кислота, как более сильная, вытеснит слабую кислоту из ее солей.
Когда колба заполнится газом, закроем ее пробкой с тремя отверстиями. В одно, как показано на рисунке, вставим согнутую под прямым углом стеклянную трубку, соединенную с боковым отводом пробирки, в которой при взаимодействии кусочков меди и азотной кислоты образуется оксид азота(IV):

4HNO 3 + Сu = Cu(NO 3) 2 + 2H 2 O + 2NO 2

Концентрация кислоты должна составлять около 60% (масс.). Внимание! NO 2 - сильный яд! В другое отверстие введем соединенную с пробиркой стеклянную трубку, через которую позже пойдет водяной пар.
В третье отверстие вставим короткий кусок трубки с бунзеновским клапаном - коротким куском резинового шланга с прорезью. Сначала создадим сильный приток в колбу оксида азота.
Но реакция пока не идет. В колбе находится смесь коричневого NO 2 и бесцветного SO 2 .
Как только мы пропустим водяной пар, изменение окраски укажет на то, что реакция началась. Под действием водяного пара оксид азота(IV) окисляет оксид серы(IV) до оксида серы(VI), который тотчас же, взаимодействуя с водяным паром, превращается в серную кислоту:

2NO 2 + 2SO 2 = 2NO + 2SO 3

2NO + O 2 = 2NO 2

На дне колбы соберется бесцветный конденсат, а излишек газа и паров уйдет через бунзеновский клапан. Выльем бесцветную жидкость из колбы в пробирку, проверим кислую реакцию лакмусовой бумажкой и обнаружим сульфат-ионы SO 4 2-- полученной серной кислоты, добавив раствор хлорида бария. Толстый белый осадок сульфата бария укажет нам на успешное проведение опыта.
По этому принципу, но в гораздо большем масштабе, получают серную кислоту в технике. Раньше реакционные камеры были футерованы свинцом, так как он устойчив при воздействии паров серной кислоты. В современных башенных установках применяют реакторы на керамической основе. Но большее количество серной кислоты производят сейчас по контактному способу. При производстве серной кислоты применяют различное сырье. Чистая сера стала применяться в ГДР только недавно. В большинстве случаев на предприятиях получают оксид серы(IV) обжигом сульфидных руд. Во вращающейся трубчатой печи или в многоярусной печи пирит взаимодействует с кислородом воздуха по следующему уравнению:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

Образующийся оксид железа(III) удаляется из печи в виде окалины и перерабатывается далее на предприятиях по получению чугуна.
Растолчем в ступке несколько кусочков пирита и поместим их в трубку из тугоплавкого стекла, которую закроем пробкой с отверстием. Затем горелкой сильно нагреем трубку, одновременно пропуская через нее воздух с помощью резиновой груши. Для того чтобы осела летучая пыль из обжигового газа, отведем его в пустой стеклянный сосуд, а из него - во вторую тугоплавкую трубку, в которой находится катализатор, нагретый до 400-500 °С.
В технике чаще всего в качестве катализатора используют оксид ванадия(V) V 2 O 5 или ванадат натрия NaVO 3 , а мы для этой цели применим красный оксид железа(III) Fe 2 О 3 . Нанесем мелкоизмельченный оксид железа на стеклянную вату, которую распределим в трубке слоем длиной 5 см. Трубку с катализатором нагреем до начала красного каления. На катализаторе оксид серы(IV) взаимодействует с кислородом воздуха; в результате образуется оксид серы (VI)

2SO 2 + O 2 = 2SO 3

Который мы различим по его способности образовывать туман во влажном воздухе. Соберем SO 3 в пустой колбе и, сильно встряхивая, смешаем с небольшим количеством воды. Получим серную кислоту - ее наличие докажем, как и в предыдущем способе.
Можно также поместить разделенные стеклянной ватой пирит и катализатор в одну из стеклянных трубок. Можно работать и в пробирке с боковым отводом. Положим на дно пробирки пирит, на него слой стеклянной ваты, а затем стеклянную вату с катализатором. Воздух введем сверху через трубку, которая должна подходить вплотную к катализатору. На боковом отводе укрепим согнутую под углом трубку, которая ведет в пробирку.
Если нет пирита, то в пробирке с боковым отводом получим оксид серы(IV) из сульфита или гидросульфита натрия и серной кислоты, и затем пропустим над катализатором полученный газ вместе с потоком воздуха или кислорода. В качестве катализатора можно применить также оксид хрома(III), который следует прокалить в железном тигле и тонко растолочь в ступке. Для этой же цели можно пропитать раствором сульфата железа(II) глиняный черепок и затем сильно прокалить его. На глине при этом образуется тонкий порошок оксида железа(III). Если сульфидов металлов мало (как, например, в ГДР), то исходными продуктами для получения серной кислоты могут служить ангидрит CaSO 4 и гипс СаSO 4 *2Н 2 О. Метод получения оксида серы (IV) из этих продуктов был разработан Мюллером и Кюне еще 60 лет назад.
Способы получения серной кислоты из ангидрита будут иметь значение и в будущем, так как серная кислота является самым распространенным химическим продуктом. Установки для получения серной кислоты из гипса, производимые в ГДР, известны и ценятся на мировом рынке.
Сульфаты можно разложить, применяя высокую (до 2000 °С) температуру. Мюллер установил, что температуру разложения сульфата кальция можно снизить до 1200 °С, если добавить тонкоизмельченный кокс. Сначала, при 900 °С, кокс восстанавливает сульфат кальция до сульфида, а тот в свою очередь при температуре 1200 °С взаимодействует с неразложившимся сульфатом; при этом образуется оксид серы(IV) и негашеная известь:

CaSO 4 + 3С = CaS + 2СО 2

CaS+ 3CaSO 4 = 4CaO + 4SO 2

Разложить сульфат кальция в лабораторных условиях удастся только при применении соответствующей высокой температуры . Будем работать с аппаратурой, подобной той, какая была использована при обжиге пирита, только трубку для сгорания возьмем фарфоровую или железную. Закроем трубку пробками, обернутыми для теплоизоляции асбестовой тканью. В отверстие в первой пробке вставим капилляр, а во второй - простую стеклянную трубку, которую соединим с промывной склянкой, наполненной наполовину водой или раствором фуксина.
Реакционную смесь приготовим следующим образом. Растолчем и ступке 10 г гипса, 5 г каолина (продается в аптеке под названием "Bolus alba") и 1,5 г активного порошкообразного угля. Смесь высушим, нагревая некоторое время при 200 °С в фарфоровой чашке.
После охлаждения (лучше всего в эксикаторе) внесем смесь в середину трубки для сжигания. При этом обратим внимание на то, чтобы она не заполнила все поперечное сечение трубки. Затем сильно нагреем трубку с помощью двух горелок (одна снизу, вторая наклонно сверху) и, когда трубка накалится, пропустим через всю систему не слишком сильный поток воздуха. Уже через 10 минут, благодаря образованию "сернистой кислоты", раствор фуксина в промывной склянке обесцветится. Выключим водоструйный насос и прекратим нагревание.
Получить высокую температуру мы можем также, если обмотаем как можно плотнее фарфоровую трубку нагревательной спиралью на 750-1000 Вт (см. рисунок). Концы спирали соединим с толстой медной проволокой, которую также многократно обмотаем вокруг трубки, а затем изолируем с помощью фарфоровых бусинок и подведем к штекеру. (Осторожно при работе с напряжением 220 В! ) Естественно, в качестве источника нагрева может пригодиться также стеклодувная горелка или паяльная лампа.
В технике работают со смесью ангидрита, кокса, глины, песка и колчеданного огарка Fe2O3. Червячный транспортер подает смесь в 70-метровую вращающуюся трубчатую печь, где сжигают пылевидный уголь. Температура в концевой части печи, в месте горения, составляет примерно 1400 °С. При этой температуре образующаяся в ходе реакции негашеная известь сплавляется с глиной, песком и колчеданным огарком, в результате получается цементный клинкер. Остывший клинкер размалывают и смешивают с несколькими процентами гипса. Получившийся в результате высококачественный портландцемент поступает в продажу. При тщательном проведении и контроле процесса из 100 т ангидрита (плюс глина, песок, кокс и колчеданный огарок) можно получить около 72 т серной кислоты и 62 т цементного клинкера.
Серную кислоту можно получать также из кизерита (сульфата магния MgSO 4 *H 2 O), который в значительных количествах поставляют соляные копи ГДР.
Для опыта воспользуемся такой же установкой, как и для разложения гипса, но трубку на этот раз возьмем из тугоплавкого стекла. Реакционную смесь получим, прокалив в фарфоровой чаше 5 г сульфата магния, а в железном тигле с крышкой - 0,5 г активного угля, и затем смешав их и растерев в ступке до пылеобразного состояния. Перенесем смесь в фарфоровую лодочку и поместим ее в реакционную трубку.
Белая масса, которая получится в конце опыта в фарфоровой лодочке, состоит из оксида магния. В технике его перерабатывают в цемент Сореля, являющийся основой для производства ксилолита. Получение таких важных для строительной промышленности производных продуктов, как цементный клинкер и ксилолит, делает производство серной кислоты из местного сырья особенно экономичным. Переработка промежуточных и побочных продуктов в ценное сырье или конечные продукты является важным принципом химической промышленности. Смешаем равные части оксида магния и опилок с раствором хлорида магния и слой образовавшейся кашицы толщиной около 1 см нанесем на подложку. Через 24-48 ч масса затвердеет, как камень. Она не горит, ее можно сверлить, пилить и прибивать гвоздями. При строительстве домов ксилолит применяют как материал для полов. Древесное волокно, затвердевшее без заполнения промежутков с цементом Сореля (магнезиальным цементом), спрессованное и склеенное в плиты, используется в качестве легкого, тепло- и звуконепроницаемого строительного материала.

ЦЕННЫЕ СИЛИКАТЫ

После того как мы рассмотрели природные хлориды и сульфаты в качестве основного сырья для химического производства, необходимо сказать немного о силикатах.
Кремний - второй по распространенности (после кислорода) элемент в литосфере нашей планеты (почти 28%). Он встречается преимущественно в виде кремнекислых солей различных металлов, а также в форме чистого оксида (кварц SiO 2). Анионы силикатов могут иметь аналогично сульфатам простую формулу однако, чаще всего встречаются сложные структуры, например, , (SiO 3) n , (Si 2 O 5) n или (SiO 2) n . Так, у полевого шпата альбита формула NaAl, а слоистый силикат каолин отвечает составу Al 4 (OH) 8 .
К сожалению, химические опыты с силикатами проводить нелегко, так как получение или превращение силикатов происходит чаще всего при температурах выше 1400 °С.
Силикаты зачастую представляют собой не кристаллическую, а стекловидную или спеченную керамическую массу. При этом группы молекул могут образовывать кольца или так называемые сетчатые структуры. Эти вещества при растворении не разрушаются. Практически их можно разрушить только фтороводородной (плавиковой) кислотой, что создает большие трудности в аналитической химии силикатов. С другой стороны, силикатные материалы имеют огромное значение как строительное сырье, и производство цемента, стекол и керамики быстро увеличивается в соответствии со все возрастающим спросом на строительные материалы. В последнее время созданы новые виды материалов, например, пенобетоны и пеностекла. Имеющееся в продаже жидкое стекло представляет собой сиропообразный раствор силиката натрия. (Na 2 Si 2 O 3) n или калия (К 2 Si 2 O 3) n . В смеси с различными добавками, такими как глинозем, гипс или опилки его можно использовать для изготовления замазок. Оно находит широкое применение при получении огнеупорной краски и огнеупорных покрытий.
В пробирку с разбавленным наполовину жидким стеклом будем добавлять по капле соляную кислоту. Мы заметим появление густого белого осадка кремневой кислоты (Н 2 SiO 3) n или ее ангидрида. По мере увеличения осадка частицы кремневой кислоты образуют структуру, в которой связывается вся оставшаяся вода. Наконец, при некоторой степени разбавления получается эластичный твердый гель кремневой кислоты.
В следующих опытах рассмотрим свойства силикагеля с различным содержанием воды. В маленькие пластмассовые чашечки (например, в крышки от баночек из-под лекарств), наполненные жидким стеклом с различной степенью разбавления, добавим по каплям соляную кислоту и размешаем полученную массу. Мы предлагаем читателю самому выбрать степень разведения исходного вещества в области от 1: 100 до неразведенного жидкого стекла. Через некоторое время образуются более или менее вязкие составы, которые затем превратятся в эластичные студенистые или твердые массы геля кремневой кислоты. Здесь речь идет о тонком коллоидно-дисперсном распределении кремневой кислоты, которая полностью включила в свою структуру имеющуюся воду.
Свежий гель кремневой кислоты, в котором на молекулу SiO 2 приходится 300 молекул Н 2 О, очень подвижен. Если же на молекулу SiO 2 приходится 30-40 молекул Н 2 О, то гель твердый, и его можно резать ножом. После сушки при слабом нагревании в нем останется шесть молекул H 2 O на молекулу SiO 2 , и гель можно размолоть до тонкодисперсного состояния.
Разотрем такую пробу в ступке или размелем в старой кофемолке. Затем высушим порошок в фарфоровой чашке или тигле, нагревая на бунзеновской горелке. При этом образуется кремневый ксерогель (от греческого xeros - сушить). Это более или менее пористое вещество, имеющее очень большую удельную поверхность (до 800 м 2 /г), обладает сильной адсорбирующей способностью. Благодаря этому свойству сухой гель применяют для поглощения водяных паров из атмосферы. Его используют для осушения замкнутых объемов, например внутри упаковок ценных машин и аппаратов.
В лабораториях патроны с силикагелем закладывают в кожуха аналитических весов; им заполняют башни для сушки газа. Чаще всего применяют так называемый голубой гель - с добавкой безводного хлорида кобальта(II) (См. раздел "Обнаруживаем кристаллизационную воду"). При потере способности к поглощению воды голубой гель окрашивается в розовый цвет. Мы можем сами получить голубой гель, если смешаем ксерогель с небольшим количеством тонкоизмельченного и хорошо высушенного хлорида кобальта(II).
Способность к поглощению воды проверим, поместив немного высушенного геля на часовом стекле во влажный воздух, например на кухне или на открытом воздухе. Станем взвешивать эту пробу сначала через короткие (10 минут) и затем через длительные интервалы времени. Если на листе миллиметровой бумаги построить графическую зависимость прироста массы от времени, то полученная кривая будет заканчиваться площадкой, соответствующей величине насыщения и указывающей на максимальную степень поглощения воды. Правда, при этом известную роль играет относительная влажность воздуха. Бетон сейчас, несомненно, является важнейшим строительным материалом. Покрытия автострад, плиты, столбы, балки, конструкции современных жилых домов и промышленных построек выполнены большей частью из бетона. Бетонные смеси различаются плотностью, прочностью и теплоизоляционными свойствами. Объединяет их то, что они все состоят из цемента и через некоторое время после смешивания с водой затвердевают, поглощая влагу. В этом заключается важнейшее отличие бетона от классического известкового раствора, затвердевание которого происходит под влиянием угольной кислоты с выделением воды.
Высококачественный портландцемент получают, обжигая смесь известняка, глины или мергеля и железистых отходов, например доменных шлаков. Этот процесс протекает при температуре около 1450 °С в огромной (длиннее 100 м) вращающейся трубчатой печи. Важными компонентами портландцемента являются ди- и трехкальциевый силикат, трехкальциевый алюминат и четырехкальциевый алюмоферрит. При затвердевании в результате реакции с водой образуются гидраты силикатов, которые аналогично силикатному гелю, описанному в предыдущем разделе, обволакивают наполнитель и способствуют образованию твердого как камень вещества. После того, как мы провели уже ряд описанных в предыдущем разделе опытов с гелями, которые имеют различные прочностные свойства, зависящие от способа их получения, в особенности от добавки воды, можем проделать несколько простых опытов по затвердеванию бетона.
Сначала сделаем простую форму для получения цементных брусков. Для этого разделим плоскую сигарную коробку с помощью реек таким образом, чтобы получились одинаковые формы 1 - 2 см в сечении, а длина их будет равна длине коробки.
В отдельные зоны поместим следующие смеси: 1 часть портландцемента и 1, 3, 5 или 8 частей чистого песка; 1 часть портландцемента, 2 части песка и 2 части кирпичной крошки (измельчим кирпич); 1 часть портландцемента, 3 части песка и 2 кусочка стальной проволоки (старые вязальные спицы), которые нужно положить по возможности параллельно по обе стороны формы и постараться ввести их в бетон.
Перед заполнением форм добавим в смесь немного воды, чтобы получилась влажная, но рассыпчатая масса (как влажная земля). Этими смесями заполним формы и тщательно утрамбуем их деревянной палочкой. В течение следующих двух дней будем смачивать цемент водой из пульверизатора или лейки с мелкими отверстиями. Через два дня, постучав по форме, вытащим из нее застывшие пробы, положим их концы на края двух стульев, причем для большей точности подложим под бруски на равном расстоянии трехгранные напильники или другие имеющие грани металлические предметы. К середине бруска на прочной проволоке будем подвешивать груз, увеличивая его до тех пор, пока не появится излом. В другом опыте проверим прочность образцов при сжатии, ударяя по ним молотком или тонким зубилом.
Наконец мы можем при получении образцов варьировать добавку воды и степень увлажнения во время отверждения. При испытании окажется, что бетон, полученный из исходной смеси высокой влажности или не увлажнявшийся при отверждении, значительно уступает в прочности. Тепло- и звукоизоляционный газо- или пенобетон получают, добавляя в вязкую бетонную массу порошок карбида алюминия или кальция. Если одновременно добавить поверхностно-активное вещество, например какое-нибудь моющее средство, то получающиеся пузырьки газа будут образовывать особенно тонкую пену.
Наряду с пенобетоном применение пеностекла и строительных частей из легких металлов и пластмасс открывает новые возможности, которые уже с успехом реализованы на опытных строительных объектах.

Серы (S) — химический элемент группы 16 периодической системы элементов с атомным номером 16, простое вещество которого сера — неметалл, желтая кристаллическое вещество. Встречается в природе в самородном состоянии и в виде сульфидов тяжелых металлов (пирита и других). Серу применяют преимущественно в химической промышленности для производства серной кислоты, синтетического волокна, сернистых красителей, дымного пороха, в резиновой промышленности, а также в сельском хозяйстве, фармацевтике и др.

Благодаря способности создавать дисульфидные связи Сера играет важную роль в составе белков.

История

Элементарную природу серы установил Антуан Лавуазье в своих опытах по сжиганию.

Общая характеристика

Серы имеет атомную массу 32,06. В природе существует 4 стабильных изотопа с массовыми числами 32-34 и 36. Сера принадлежит к халькогенов, по новой классификации в шестнадцатом, а по старой к VI группы элементов периодической таблицы. Сера является неметаллов.

Известны несколько аллотропных форм серы. При обычных условиях стабильной является ромбическая сера — бледно-желтого цвета, с плотностью 2070 кг / м3, t плав = 112,8 ° С, t кип = 444,6 о С. Во всех жидких и твердых состояниях сера диамагнитна. Термодинамические и другие свойства серы резко меняются при 160 ° C, что связано с изменением молекулярного строения жидкой серы. Вязкость серы с повышением температуры сильно возрастает (от 0,0065 Пас при 155 ° C до 93,3 Пас при 187 ° C), а затем падает (до 0,083 Пас при 444,6 ° C).

Сера реагирует почти со всеми металлами.

Распространение в природе

Серы — достаточно распространенный элемент, на него приходится около 0,1% массы земной коры. Среднее содержание серы в земной коре 4,710 -2 мас.%, При этом основное количество природной серы сосредоточена в осадочных горных породах (0,3 мас.%). В других горных породах среднее содержание серы таков: дуниты, перидотиты, пироксениты — 0,01%; базальты, габронориты, диабаза — 0,03%; диориты, андезиты — 0,02%.

В природе сера встречается как в свободном состоянии — так называемая самородная сера, но значительно чаще она встречается в связанном виде, то есть в виде различных соединений. Важнейшие из них — железный колчедан, или пирит FeS 2, цинковая обманка ZnS, свинцовый блеск PbS, медный блеск Cu 2 S, гипс CaSO 4 · 2H 2 O, мирабилит Na 2 SO 4 · 10H 2 O и др.

Сера содержится в каменном угле и нефти, а также во всех растительных и животных организмах, поскольку она входит в состав белков.

Содержание серы в нефти и природном газе оценивается в 210 9 т, то есть больше, чем запасы природной серы. Сера в нефти присутствует в разной форме, от элементной серы и сероводорода в сернистой органики, который включает более 120 соединений. Основные серосодержащие вещества углеводородного сырья — сероводород, меркаптаны и другие сероорганические соединения. Сырьевой базой для получения серы является, как правило, газы с содержанием сероводорода не менее 0,1%.

Конечно самородная сера встречается сплошной массой, заполняя трещины и полости в горных породах, или в виде натечных, шаровидных и гниздоподибних агрегаты, сталактитов, сталагмитов, налетов, выцветов, землистых порошковатые скоплений. Нередко она образует кристаллы, которые часто группируются в сростки, друзы, щетки.

Физические свойства

Сера — кристаллическое вещество желтого цвета. Она очень хрупкая и легко растирается в мельчайших порошок. Плотность 2070 кг / м 3. t плав = 112,8 ° С, t кип = 444,6 о С. Во всех жидких и твердых состояниях сера диамагнитна.

Встречается в трех аллотропных формах: две кристаллические (ромбическая и моноклинная, по способу соединения атомов в кристалле) и аморфная.

  • α-S (ромбическая) кристаллическая модификация, t плав = 112,8 ° C, устойчива к 95,6 ° C, лимонно-желтая;
  • β-S кристаллическая модификация, t плав = 119 ° C, устойчива при 95,6-119 ° C, медово-желтая. До 160 ° C молекулы 8-атомные, в парах — 2-атомные (парамагнитная сера), 4, 6, и 8-атомные.
  • Выше 160 ° C образуются спиральные цепи μ-S пластической серы.

Электрического тока и тепла сера почти не проводит. Пары серы при очень быстром охлаждении переходят в твердое состояние в виде очень тонкого порошка (серного цвета), минуя жидкое состояние. В воде сера нерастворим и не смачивается водой, но в бензоле C 6 H 6 и особенно в сероуглероде CS 2 растворяется хорошо.

Химические свойства

Имея во внешнем слое шесть электронов: (+ 16), 2,8,6 — атомы серы проявляют свойства окислителя и, присоединяя от атомов других элементов два электрона, которых им не хватает в полностью заполненной внешней оболочки, превращаются в отрицательно двухвалентные ионы: S 0 + 2е = S 2. Но Сера — менее активный окислитель, чем кислород, поскольку его валентные электроны отдаленные от ядра атома и слабее с ним связаны, чем валентные электроны атомов кислорода. В отличие от кислорода Сера может проявлять свойства и восстановителя: S 0 — 6e = S 6+ или S 0 — 4e = S 4+. Восстановительные свойства серы проявляются при взаимодействии с сильнее него окислителем, то есть с веществами, атомы которых имеют большее сродство к электрону.

Серы может непосредственно реагировать почти со всеми металлами (за исключением благородных), но преимущественно при нагревании. Так, если смесь порошков серы и железа нагреть хоть в одном месте, чтобы началась реакция, то дальше вся смесь сама собой раскалится (за счет теплоты реакции) и превратится в черную хрупкую вещество — моносульфид железа:

Fe + S = FeS

Смесь порошков серы и цинка при поджога реагирует очень бурно, со вспышкой. Вследствие реакции образуется сульфид цинка:

Zn + S = ZnS

С ртутью сера реагирует даже при обычной температуре. Так, при растирании ртути с порошком серы возникает черное вещество — сульфид ртути:

Hg + S = HgS

При высокой температуре сера реагирует также с водородом с образованием сероводорода:

H 2 + S = H 2 S.

При взаимодействии с металлами и водородом сера играет роль окислителя, а сама восстанавливается до ионов S 2- Поэтому во всех сульфидах сера негативно двухвалентное. Сера сравнительно легко реагирует и с кислородом. Так, подожжена сера горит на воздухе с образованием диоксида серы SO 2 (сульфитного ангидрида) и в очень незначительном количестве триоксида серы SO 3 (сульфатного ангидрида).

  • S + O 2 = SO 2
  • 2S + 3O 2 = 2SO 3

При этом окислителем является кислород, а серу — восстановителем. В первой реакции атом серы теряет четыре, а во второй — шесть валентных электронов, в результате чего Сера в составе SO 2 положительно четырёхвалентен, а в SO 3 — положительно шестивалентный.

Получение

Серу получают из самородных руд, а также в виде побочного продукта при переработке полиметаллических руд, из сульфатов при их комплексной переработке, из природных газов и горючих ископаемых при их очистке. Доля серы получена из сероводорода возрастает. Для отделения серы от посторонних примесей ее выплавляют в автоклавах. Автоклавы — это железные цилиндры, в которые загружают руду и нагревают перегретым водяным паром до 150 ° С под давлением 6 атм.. Расплавленное сера стекает вниз, а пустая порода остается. Выплавленная из руды сера еще содержит определенное количество примесей.

Вполне чистую серу получают перегонкой в ​​специальных печах, соединенных с большими камерами. Пары серы в холодной камере сразу переходят в твердое состояние и оседают на стенках в виде очень тонкого порошка светло-желтого цвета. Когда же камера нагревается до 120 ° С, то пары серы превращаются в жидкость. Расплавленную серу разливают в деревянные цилиндрические формы, где она и застывает. Такую серу называют Черенкова.

Применение

Сера широко применяется в различных отраслях народного хозяйства, в основном в химической промышленности для производства серной кислоты H 2 SO 4 (почти половина серы, добываемой в мире), сероуглерода CS 2, некоторых красителей, и других химических продуктов. Значительные количества серы потребляет резиновая промышленность для вулканизации каучука, то есть для преобразования каучука в резину.

Серу используют в химической промышленности при производстве фосфорной, соляной и других кислот, в резиновой промышленности, производстве красителей, дымного пороха и тому подобное. Самородную серу используют в сельском хозяйстве (инсектициды, микроудобрения, как дезинфицирующее средство в животноводстве).

Техническая сера, применяется для производства серной кислоты, должна содержать не менее 95% серы, мышьяка и Селена не должно быть совсем, а содержание органических веществ не должно превышать 1%. Производство искусственного волокна (вискозы) в химической промышленности является другим потребителем серы. В сельском хозяйстве серу применяют как средство борьбы с вредителями, частично в качестве удобрения, для дезинфекции при лечении животных. В бумажном производстве серу в виде SО2 используют при обработке древесной массы (бисульфатний метод). Сера используется при вулканизации резины, в стеклянной, кожевенной промышленности. Незначительные количества серы высокой чистоты используются в химико-фармацевтической промышленности. Серу используют также для производства ультрамарина. Текстильная, пищевая, крахмальная и паточная отрасли промышленности применяют серу или ее соединения для отбеливания и осветления, при консервировании фруктов, в холодильном деле.

Серу используют также в спичечном производстве, в пиротехнике, в производстве черного пороха и тому подобное. В медицине сера идет для изготовления серной мази при лечении кожных болезней. В сельском хозяйстве сернистый цвет применяют для борьбы с вредителями хлопчатника и виноградной лозы.

Воздействие на человека

Серный пыль раздражает органы дыхания, слизистые оболочки. ПДК — 2 мг / м. куб.

Сера - одно из немногих веществ, которыми уже несколько тысяч лет назад оперировали первые «химики». Она стала служить человечеству задолго до того, как заняла в таблице Менделеева клетку под № 16.

Об одном из самых древних (хотя и гипотетических!) применений серы рассказывают многие старинные книги. Как источник тепла при термообработке грешников серу живописуют и Новый и Ветхий заветы. И если книги такого рода не дают достаточных оснований для археологических раскопок в поисках остатков райских кущ или геенны огненной, то их свидетельство о том, что древние были знакомы с серой и некоторыми ее свойствами, можно принять на веру.

Самородная сера

Одна из причин этой известности - распространенность самородной серы в странах, древнейших цивилизаций. Месторождения этого желтого горючего вещества разрабатывались греками и римлянами, особенно в Сицилии, которая вплоть до конца прошлого века славилась в основном серой.

С древнейших времен серу использовали для религиозно-мистических целей, ее зажигали при различных церемониях и ритуалах. Но так же давно элемент № 16 приобрел и вполне мирские назначения: серой чернили оружие, ее употребляли при изготовлении косметических и лекарственных мазей, ее жгли для отбелки тканей и для борьбы с насекомыми. Добыча серы значительно увеличилась после того, как был изобретен черный порох. Ведь сера (вместе с углем и селитрой) - непременный его компонент.

И сейчас пороховое производство потребляет часть добываемой серы, правда весьма незначительную. В наше время сера - один из важнейших видов сырья для многих химических производств . И в этом причина непрерывного роста мирового производства серы .

Большие скопления самородной серы встречаются не так уж часто. Чаще она присутствует в некоторых рудах. Руда самородной серы - это порода с вкраплениями серы.

Когда образовались эти вкрапления - одновременно с сопутствующими породами или позже? От ответа на этот вопрос зависит направление поисковых и разведочных работ. Но, несмотря на тысячелетия общения с серой, человечество до сих пор не имеет однозначного ответа. Существует несколько теорий, авторы которых придерживаются противоположных взглядов.

Теория сингенеза (т. е. одновременного образования серы и вмещающих пород) предполагает, что образование самородной серы происходило в мелководных бассейнах. Особые бактерии восстанавливали сульфаты, растворенные в воде, до сероводорода, который поднимался вверх, попадал в окислительную зону и здесь химическим путем или при участии других бактерий окислялся до элементной серы. Сера осаждалась на дно, и впоследствии содержащий серу ил образовал руду.

ИЗ ДРЕВНИХ И СРЕДНЕВЕКОВЫХ КНИГ.

«Сера применяется для очищения жилищ, так как многие держатся мнения, что запах и горение серы могут предохранить от всяких чародейств и прогнать всякую нечистую силу».

Плиний Старший.

«Естественная история». I в. н.э.

«Если травы чахлы, бедны соками, а ветви и листва деревьев имеют окраску тусклую, грязную, темноватую вместо блестящего зеленого цвета, это признак, что подпочва изобилует минералами, в которых господствует сера».

«Если руда очень богата серой, ее зажигают на широком железном листе с множеством отверстий, через которые сера вытекает в горшки, наполненные доверху водой».

«Сера входит также в состав ужасного изобретения - порошка, который может метать далеко вперед куски железа, бронзы или камня - орудие войны нового типа».

Агрикола.

«О царстве минералов». XVI в.

КАК ИСПЫТЫВАЛИ СЕРУ в XIV ВЕКЕ. «Если ты хочешь испытать серу, хороша она или нет, то возьми кусок серы в руку и поднеси к уху. Если сера трещит так, что ты слышишь ее треск, значит она хороша; если же сера молчит и не трещит, то она нехороша...»

Этот своеобразный метод определения качества материала на слух (применительно к сере) может быть использован и сейчас. Экспериментально подтвердилось, что «трещит» только сера, содержащая не больше одного процента примесей. Иногда дело не ограничивается только треском - кусок серы раскалывается на части.

УДУШАЮЩИЙ СЕРНЫЙ ГАЗ. Как известно, выдающийся естествоиспытатель древности Плиний Старший погиб в 79 г. н.э. при извержение вулкана. Его племянник в письме историку Тациту писал: «... Вдруг раздались раскаты грома, и от горного пламени покатились вниз черные серные пары. Все разбежались. Плиний поднялся и, опираясь на двух рабов, думал тоже уйти; но смертоносный пар окружил его со всех сторон, его колени подогнулись, он снова упал и задохся».

«Черные серные пары», погубившие Плиния, состояли, конечно, не только из парообразной серы. В состав вулканических газов входят и сероводород, и двуокись серы. Эти газы обладают не только резким запахом, но и большой токсичностью. Особенно опасен сероводород. В чистом виде он убивает человека почти мгновенно. Опасность велика даже при незначительном (порядка 0,01%) содержании сероводорода в воздухе. Сероводород тем более опасен, что он может накапливаться в организме. Он соединяется с железом , входящим в состав гемоглобина, что может привести к тяжелейшему кислородному голоданию и смерти. Сернистый газ (двуокись серы) менее токсичен, однако выпуск его в атмосферу приводил к тому, что вокруг металлургических заводов гибла вся растительность. Поэтому на всех предприятиях, производящих или использующих эти газы, вопросам техники безопасности уделяется особое внимание.

СЕРНИСТЫЙ ГАЗ И СОЛОМЕННАЯ ШЛЯПКА. Соединяясь с водой, сернистый газ образует слабую сернистую кислоту H 2 SO 3 , существующую только в растворах. В присутствии влаги сернистый газ обесцвечивает многие красители. Это свойство используется для отбелки шерсти, шелка, соломы. Но такие соединения, как правило, не обладают большой стойкостью, и белые соломенные шляпки со временем приобретают первоначальную грязно-желтую окраску.

HE АСБЕСТ, ХОТЯ И ПОХОЖ. Сернистый ангидрид SO 3 в обычных условиях представляет собой бесцветную очень летучую жидкость, кипящую при 44,8°С. Твердеет он при - 16,8°С и становится очень похожим на обыкновенный лед. Но есть и другая - полимерная модификация твердого серного ангидрида (формулу его в этом случае следовало бы писать (SO 3) n . Внешне она очень похожа на асбест, ее волокнистую структуру подтверждают рентгенограммы. Строго определенной точки плавления эта модификация не имеет, что свидетельствует о ее неоднородности.

ГИПС и АЛЕБАСТР. Гипс CaSO 4 -2H 2 O - один из самых распространенных минералов. Но распространенные в медицинской практике «гипсовые шипы» делаются не из природного гипса, а из алебастра. Алебастр отличается от гипса только количеством кристаллизационной воды в молекуле, его формула 2CaSO 4 -H 2 O. При «варке» алебастра (процесс идет при 160-170°С в течение 1,5-2 часов) гипс теряет три четверти кристаллизационной воды, и материал приобретает вяжущие свойства. Алебастр жадно захватывает воду, при этом происходит быстрая беспорядочная кристаллизация. Разрастись кристаллики не успевают, но сплетаются друг с другом; масса, образованная ими, в мельчайших подробностях воспроизводит форму, в которой происходит твердение. Химизм происходящего в это время процесса обратен происходящему при варке: алебастр превращается в гипс. Поэтому отливка - гипсовая, маска - гипсовая, повязка - тоже гипсовая, а делаются они из алебастра.

ГЛАУБЕРОВА СОЛЬ. Соль Na 2 SO 4 *10H 2 O, открытая крупнейшим немецким химиком XVII в. Иоганном Рудольфом Глаубером и названная в его честь, до сих пор широко применяется в медицине, стеклоделии, кристаллографических исследованиях. Глаубер так описывал ее: «Эта соль, если она хорошо приготовлена, имеет вид льда; она образует длинные, совершенно прозрачные кристаллы, которые растапливаются на языке, как лед. У нее вкус обыкновенной соли, без всякой едкости. Брошенная на пылающие угли, она не растрескивается с шумом, как обыкновенная кухонная соль, и не воспламеняется со взрывом, как селитра. Она без запаха и выносит любую степень жара. Ее можно применять с выгодой в медицине как снаружи, так и внутрь. Она заживляет свежие раны, не раздражая их. Это превосходное внутреннее лекарство: будучи растворена в воде и дана больному, она очищает кишки».

Минерал глауберовой соли называется мирабилитом (от латинского «mimbilis» - удивительный). Название происходит от имени, которое дал Глаубер открытой им соли; он назвал ее чудесной. Крупнейшее в мире разработки этого вещества находятся в нашей стране, чрезвычайно богата глауберовой солью вода знаменитого залива (теперь озера) Кара-Богаз-Гол.

СУЛЬФИТЫ, СУЛЬФАТЫ, ТИОСУЛЬФАТЫ... Если вы фотолюбитель, вам необходим фиксаж, т. е. натриевая соль серноватистой (тиосерной) кислоты H 2 S 2 O 3 . Тиосульфат натрия Na2S2O3 (он же гипосульфит) служил поглотителем хлора в первых противогазах. Если вы порезались во время бритья, кровь можно остановить кристаллом алюмокалиевых квасцов KAl(SO 4) 2 -12H 2 O. Если вы хотите побелить потолки, покрыть медью какой-либо предмет или уничтожить вредителей в саду - вам не обойтись без темносиних кристаллов медного купороса CuSO 4 *5H 2 O. Если врачи порекомендовали вам очистить желудок, воспользуйтесь горькой солью MgSO4. (Она же придает горький вкус морской воде.)

Широко используются также железный купорос FeSO 4 *7H2O, хромовые квасцы K 2 SO 4 Cr 2 (SO 4) 3 *2H 2 O и многие другие соли серной, сернистой и тиосерной кислот.

КИНОВАРЬ. Если в лаборатории разлили (возникла опасность отравления ртутными парами!), ее первым делом собирают, а те места, из которых серебристые капли не извлекаются, засыпают порошкообразной серой. Ртуть и сера вступают в реакцию даже в твердом состоянии - при простом соприкосновении. Образуется кирпично-красная киноварь - сульфид ртути - химически крайне инертное и безвредное вещество. Выделить ртуть из киновари несложно. Многие другие металлы, в частности железо, вытесняют ртуть из киновари.

СЕРОБАКТЕРИИ. В природе постепенно происходит круговорот серы, подобный круговороту азота или углерода . Растения потребляют серу - ведь ее атомы входят в состав белка. Растения берут серу из растворимых сульфатов, а гнилостные бактерии превращают серу белков в сероводород (отсюда - отвратительный запах гниения). Но есть так называемые серобактерии, которым вообще не нужна органическая пища. Они питаются сероводородом, и в их организмах в результате реакции между H 2 S, CO 2 и O 2 образуются углеводы и элементная сера. Серобактерии нередко оказываются переполнены крупинками серы - почти всю их массу составляет сера с очень небольшой «добавкой» органических веществ.

СЕРА - ФАРМАЦЕВТАМ. Все сульфамидные препараты - сульфидин, сульфазол, норсульфазол, сульгин, сульфадимезин, стрептоцид и другие подавляют активность многочисленных микробов. И все эти лекарства - органические соединения серы. После появления антибиотиков роль сульфамидных препаратов несколько уменьшилась. Впрочем, и многие антибиотики можно рассматривать как органические производные серы. В частности, она обязательно входит в состав пенициллина.

Мелкодисперсная элементная сера - основа мазей, применяемых при лечении грибковых заболеваний кожи.

ЧТО МОЖНО ПОСТРОИТЬ ИЗ СЕРЫ. В 70-х годах в некоторых странах мира производство серы превысило потребности в ней. Поэтому сере стали искать новые применения, прежде всего в таких материалоемких областях, как строительство. В результате этих поисков появились серный пенопласт - как теплоизоляционный материал, бетонные смеси, в которых серой частично или полностью заменен портландцемент, покрытия для автострад, содержащие элементную серу.

ЧЕРНАЯ СЕРА. Соединение необычного состава S 4 N 4 получено американскими химиками в конце 70-х годов. Это вещество получалось при взаимодействии безводного аммиака с одним из хлоридов серы. Соединение - чрезвычайно нестойкое, разлагается со взрывом, и хранят его либо при очень высоком давлении, либо под слоем бензола. В этих оранжево-красных кристаллах обнаружили черные прожилки, которые, как оказалось, состоят из элементной серы. Черная сера из тетранитрида оказалась новой аллотропной модификацией давно известного простого вещества.

НЕМЕТАЛЛ - МЕТАЛЛ. В 1980 г. журнал «Письма в ЖЭТФ» опубликовал сообщение о том, что сера при высоком давлении может переходить в металлическое и даже сверхпроводящее состояние.

Халькогены — группа элементов, к которой относится сера. Ее химический знак — S — первая буква латинского названия Sulfur. Состав простого вещества записывают с помощью этого символа без индекса. Рассмотрим основные моменты, касающиеся строения, свойств, получения и применения данного элемента. Характеристика серы будет представлена максимально подробно.

Общие признаки и различия халькогенов

Сера относится к подгруппе кислорода. Это 16-я группа в современной длиннопериодной форме изображения периодической системы (ПС). Устаревший вариант номера и индекса — VIA. Названия химических элементов группы, химические знаки:

  • кислород (О);
  • сера (S);
  • селен (Se);
  • теллур (Te);
  • полоний (Po).

Внешняя электронная оболочка вышеперечисленных элементов устроена одинаково. Всего она содержит 6 которые могут участвовать в образовании химической связи с другими атомами. Водородные соединения отвечают составу H 2 R, например, H 2 S — сероводород. Названия химических элементов, образующих с кислородом соединения двух типов: сера, селен и теллур. Общие формулы оксидов этих элементов — RO 2 , RO 3 .

Халькогенам соответствуют простые вещества, которые значительно отличаются по физическим своствам. Наиболее распространенные в земной коре из всех халькогенов — кислород и сера. Первый элемент образует два газа, второй — твердые вещества. Полоний — радиоактивный элемент — редко встречается в земной коре. В группе от кислорода до полония неметаллические свойства убывают и возрастают металлические. Например, сера — типичный неметалл, а теллур обладает металлическим блеском и электропроводностью.

Элемент № 16 периодической системы Д.И. Менделеева

Относительная атомная масса серы — 32,064. Из природных изотопов наиболее распространен 32 S (более 95% по массе). Встречаются в меньших количествах нуклиды с атомной массой 33, 34 и 36. Характеристика серы по положению в ПС и строению атома:

  • порядковый номер — 16;
  • заряд ядра атома равен +16;
  • радиус атома — 0,104 нм;
  • энергия ионизации —10,36 эВ;
  • относительная электроотрицательность — 2,6;
  • степень окисления в соединениях — +6, +4, +2, -2;
  • валентности — II(-),II(+), IV(+), VI (+).

Сера находится в третьем периоде; электроны в атоме располагаются на трех энергетических уровнях: на первом — 2, на втором — 8, на третьем — 6. Валентными являются все внешние электроны. При взаимодействии с более электроотрицательными элементами сера отдает 4 или 6 электронов, приобретая типичные степени окисления +6, +4. В реакциях с водородом и металлами атом притягивает недостающие 2 электрона до заполнения октета и достижения устойчивого состояния. в этом случае понижается до -2.

Физические свойства ромбической и моноклинной аллотропных форм

При обычных условиях атомы серы соединяются между собой под углом в устойчивые цепи. Они могут быть замкнуты в кольца, что позволяет говорить о существовании циклических молекул серы. Состав их отражают формулы S 6 и S 8 .

Характеристика серы должна быть дополнена описанием различий между аллотропными модификациями, обладающими разными физическими свойствами.

Ромбическая, или α-сера — наиболее стабильная кристаллическая форма. Это ярко-желтые кристаллы, состоящие из молекул S 8 . Плотность ромбической серы составляет 2,07 г/см3. Светло-желтые кристаллы моноклинной формы образованы β-серой с плотностью 1,96 г/см3. Температура кипения достигает 444,5°С.

Получение аморфной серы

Какого цвета сера в пластическом состоянии? Это темно-коричневая масса, совершенно не похожая на желтый порошок или кристаллы. Для ее получения нужно расплавить ромбическую или моноклинную серу. При температуре выше 110°С образуется жидкость, при дальнейшем нагревании она темнеет, при 200°С становится густой и вязкой. Если быстро вылить расплавленную серу в холодную воду, то она застынет с образованием зигзагообразных цепей, состав которых отражает формула S n .

Растворимость серы

Некоторые модификации в сероуглероде, бензоле, толуоле и жидком аммиаке. Если медленно охладить органические растворы, то образуются игольчатые кристаллы моноклинной серы. При испарении жидкостей выделяются прозрачные лимонно-желтые кристаллы ромбической серы. Они хрупкие, их легко можно смолоть в порошок. Сера не растворяется в воде. Кристаллы опускаются на дно сосуда, а порошок может плавать на поверхности (не смачивается).

Химические свойства

В реакциях проявляются типичные неметаллические свойства элемента № 16:

  • сера окисляет металлы и водород, восстанавливается до иона S 2- ;
  • при сгорании на воздухе и кислороде образуются ди- и триоксид серы, которые являются ангидридами кислот;
  • в реакции с другим более электроотрицательным элементом — фтором — сера тоже теряет свои электроны (окисляется).

Свободная сера в природе

По распространенности в земной коре сера находится на 15 месте среди химических элементов. Среднее содержание атомов S в составляет 0,05% от массы земной коры.

Какого цвета сера в природе (самородная)? Это светло-желтый порошок с характерным запахом или желтые кристаллы, обладающие стеклянным блеском. Залежи в виде россыпи, кристаллические пласты серы встречаются в районах древнего и современного вулканизма: в Италии, Польше, Средней Азии, Японии, Мексике, США. Нередко при добыче находят красивые друзы и гигантские одиночные кристаллы.

Сероводород и оксиды в природе

В районах вулканизма на поверхность выходят газообразные соединения серы. Черное море на глубине свыше 200 м является безжизненным из-за выделения сероводорода H 2 S. Формула оксида серы двухвалентной — SO 2 , трехвалентной — SO 3 . Перечисленные газообразные соединения присутствуют в составе некоторых месторождений нефти, газа, природных вод. Сера входит в состав каменного угля. Она необходима для построения многих органических соединений. При гниении белков куриного яйца выделяется сероводород, поэтому часто говорят, что у этого газа запах тухлых яиц. Сера относится к биогенным элементам, она необходима для роста и развития человека, животных и растений.

Значение природных сульфидов и сульфатов

Характеристика серы будет неполной, если не сказать, что элемент встречается не только в виде простого вещества и оксидов. Наиболее распространенные природные соединения — это соли сероводородной и серной кислот. Сульфиды меди, железа, цинка, ртути, свинца встречаются в составе минералов сфалерита, киновари и галенита. Из сульфатов можно назвать натриевую, кальциевую, бариевую и магниевую соли, которые образуют в природе минералы и горные породы (мирабилит, гипс, селенит, барит, кизерит, эпсомит). Все эти соединения находят применение в разных отраслях хозяйства, используются как сырье для промышленной переработки, удобрения, стройматериалы. Велико медицинское значение некоторых кристаллогидратов.

Получение

Вещество желтого цвета в свободном состоянии встречается в природе на разной глубине. При необходимости серу выплавляют из горных пород, не поднимая их на поверхность, а нагнетая на глубину перегретый и Еще один метод связан с возгонкой из раздробленных горных пород в специальных печах. Другие способы предусматривают растворение сероуглеродом или флотацию.

Потребности промышленности в сере велики, поэтому для получения элементарного вещества используются его соединения. В сероводороде и сульфидах сера находится в восстановленной форме. Степень окисления элемента равна -2. Проводят окисление серы, повышая это значение до 0. Например, по методу Леблана сульфат натрия восстанавливают углем до сульфида. Затем из него получают сульфид кальция, обрабатывают его углекислым газом и парами воды. Образующийся сероводород окисляют кислородом воздуха в присутствии катализатора: 2H 2 S + O 2 = 2H 2 O +2S. Определение серы, полученной разными способами, порой дает низкие показатели чистоты. Рафинирование или очистку проводят дистилляцией, ректификацией, обработкой смесями кислот.

Применение серы в современной промышленности

Сера гранулированная идет на различные производственные нужды:

  1. Получение серной кислоты в химической промышленности.
  2. Производство сульфитов и сульфатов.
  3. Выпуск препаратов для подкормок растений, борьбы с болезнями и вредителями сельскохозяйственных культур.
  4. Серосодержащие руды на горно-химических комбинатах перерабатывают для получения цветных металлов. Сопутствующим производством является сернокислотное.
  5. Введение в состав некоторых сортов сталей для придания особых свойств.
  6. Благодаря получают резину.
  7. Производство спичек, пиротехники, взрывчатых веществ.
  8. Использование для приготовления красок, пигментов, искусственных волокон.
  9. Отбеливание тканей.

Токсичность серы и ее соединений

Пылевидные частицы, обладающие неприятным запахом, раздражают слизистые оболочки носовой полости и дыхательных путей, глаза, кожу. Но токсичность элементарной серы считается не особенно высокой. Вдыхание сероводорода и диоксида может вызвать тяжелое отравление.

Если при обжиге серосодержащих руд на металлургических комбинатах отходящие газы не улавливают, то они поступают в атмосферу. Соединяясь с каплями и парами воды, оксиды серы и азота дают начало так называемым кислотным дождям.

Сера и ее соединения в сельском хозяйстве

Растения поглощают сульфат-ионы вместе с почвенным раствором. Снижение содержания серы ведет к замедлению метаболизма аминокислот и белков в зеленых клетках. Поэтому сульфаты применяют для подкормок сельскохозяйственных культур.

Для дезинфекции птичников, подвалов, овощехранилищ простое вещество сжигают или обрабатывают помещения современными серосодержащими препаратами. Оксид серы обладает антимикробными свойствами, что издавна находит применение в производстве вин, при хранении овощей и фруктов. Препараты серы используют в качестве пестицидов для борьбы с болезнями и вредителями сельскохозяйственных культур (мучнистой росой и паутинным клещом).

Применение в медицине

Большое значение изучению лечебных свойств желтого порошка придавали великие врачеватели древности Авиценна и Парацельс. Позже было установлено, что человек, не получающий достаточное количество серы с пищей, слабеет, испытывает проблемы со здоровьем (к ним относятся зуд и шелушение кожи, ослабление волос и ногтей). Дело в том, что без серы нарушается синтез аминокислот, кератина, биохимических процессов в организме.

Медицинская сера включена в состав мазей для лечения заболеваний кожи: акне, экземы, псориаза, аллергии, себореи. Ванны с серой могут облегчить боли при ревматизме и подагре. Для лучшего усвоения организмом созданы водорастворимые серосодержащие препараты. Это не желтый порошок, а мелкокристаллическое вещество белого цвета. При наружном использовании этого соединения его вводят в состав косметического средства для ухода за кожей.

Гипс давно применяется при иммобилизации травмированных частей тела человека. назначают как слабительное лекарство. Магнезия понижает артериальное давление, что используется в лечении гипертонии.

Сера в истории

Еще в глубокой древности неметаллическое вещество желтого цвета привлекало внимание человека. Но только в 1789 году великий химик Лавуазье установил, что порошок и кристаллы, найденные в природе, состоят из атомов серы. Считалось, что неприятный запах, возникающий при ее сжигании, отпугивает всякую нечисть. Формула оксида серы, который получается при горении, — SO 2 (диоксид). Это токсичный газ, его вдыхание опасно для здоровья. Несколько случаев массового вымирания людей целыми деревнями на побережьях, в низинах ученые объясняют выделением из земли либо воды сероводорода или диоксида серы.

Изобретение черного пороха усилило интерес к желтым кристаллам со стороны военных. Многие битвы были выиграны благодаря умению мастеров соединять серу с другими веществами в процессе изготовления Важнейшее соединение — серную кислоту — тоже научились применять очень давно. В средние века это вещество называли купоросным маслом, а соли — купоросами. Медный купорос CuSO 4 и железный купорос FeSO 4 до сих пор не утратили своего значения в промышленности и сельском хозяйстве.

Вверх